Code: 22MEMD2T5A

I M.Tech - II Semester – Regular Examinations - JULY - 2023

FRACTURE MECHANICS (MACHINE DESIGN)

Duration: 3 hours	Max. Marks: 60
Notes 1 This near southing 4 monthing	- frame A and the of Could have Each and the

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks
	UNIT-I				
1	a)	Discuss the different modes of fracture	L3	CO1	10 M
		failure with neat sketch and their			
	significance in design of structures.				
	b)	Discuss the energy release rate of DCB	L3	CO1	5 M
		specimen.			
OR					
2	a)	A large plate of 36 mm thickness with an	L4	CO1	10 M
		edge crack of $a = 32$ mm length is pulled			
		very slowly under displacement control			
		loading. At the displacement of 7.2 mm,			
		when the recorded load is 2750 N, the crack			
		starts growing. At $a = 41.7$ mm, the crack is			
		arrested and the load decreases to 1560 N.			
		Determine the critical energy release rate.			
	b)	Discuss the phenomenon of stable and	L3	CO1	5 M
		unstable crack growth.			

UNIT-II					
3	a)	Discuss the phenomenon of Linear Elastic	L3	CO1	7 M
		Fracture Mechanics (LEFM) in brittle		CO2	
		materials.			
	b)	Discuss the variation of critical SIF with	L3	CO1	8 M
		plate thickness.		CO2	
		OR			
4	a)	In a large plate, a crack of length 2a is	L3	CO1	8 M
		inclined with an angle α with x_1 -axis. The		CO2	
		plate is loaded in x_2 direction with $\sigma_{22} = \sigma$.			
		(i) Find the stress intensity factors.			
		(ii) For $\sigma = 80$ MPa, $2a = 20$ mm and			
		$\alpha = 30^{\circ}$, determine K _I and K _{II} .			
	b)	Relate Energy release rate and stress	L3	CO1	7 M
		intensity factor.		CO2	
		UNIT-III			
5		nsider two infinitely long strips of thickness h ₁	L4	CO1	15 M
	and h_2 with material properties as shown in Fig.			CO3	
	These strips are bonded together with an edge-				
	crack of length a. The strips are wide enough to				
assume plane strain conditions. The lower face of					
	the bottom strip is bonded to a rigid surface, while the top surface of the upper strip is bonded to a rigid rail. Determine the J-Integral, if the rail				
	is pulled up by distance u.				
	(Note: At the interface $\sigma^{(1)}_{22} = \sigma^{(2)}_{22}$, but also				
	ε ⁽¹⁾	$_{22} \neq \varepsilon^{(2)}_{22.})$			

	Rigid rail $u \downarrow$ E_1, v_1 h_1 h_1 h_2 Bond-interface					
	OR		1			
6	Consider a three-point bend specimen with a centre load as shown in Fig. P = 2230 N/mm $f = 2230 N/mm$ $f = 2230 N/mm$ $f = 2230 N/mm$ $f = 2230 N/mm$	L4	CO1 CO3	15 M		
	The material properties for the Ramberg-Osgood relation are: $\sigma_{ys} = \sigma_0 = 700$ MPa, $\varepsilon_0 = \sigma_0/E$, $E = 207$ GPa, a = 8.2 mm, $n = 6(a) Determine KI (b) Estimate the plastic zonesize (c) Determine GI based on the LEFM(d) Determine Jp using the engineering approach.$					
	UNIT-IV					
7	Explain any three test specimens for determination of the critical stress intensity factor (K_{Ic}) .	L3	CO1 CO4	15 M		
OR						
8	Discuss any three indirect methods to determine fracture parameters with a neat sketch.	L3	CO1 CO4	15 M		